In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import os
from os.path import join
import sys
import json
In [2]:
# Load the "autoreload" extension
%load_ext autoreload
# always reload modules marked with "%aimport"
%autoreload 1
In [4]:
# add the 'src' directory as one where we can import modules
cwd = os.getcwd()
src_dir = join(cwd, os.pardir, 'src')
sys.path.append(src_dir)
In [26]:
from util.utils import rename_cols
In [31]:
#EPA CEMS data
path = join(cwd, '..', 'Data storage', 'Derived data',
'Monthly EPA emissions 2017-08-31.csv')
epa = pd.read_csv(path)
rename_cols(epa)
epa = epa.groupby(['year', 'month', 'plant id']).sum()
In [6]:
#EIA facility data
path = join(cwd, '..', 'Data storage',
'Facility gen fuels and CO2 2017-08-31.zip')
eia_fac = pd.read_csv(path)
rename_cols(eia_fac)
eia_fac = eia_fac.groupby(['year', 'month', 'plant id', 'fuel']).sum()
In [10]:
idx = pd.IndexSlice
In [37]:
example_eia = eia_fac.loc[idx[2016, 6, 1897, :], :]
example_eia
Out[37]:
In [38]:
example_eia.sum()
Out[38]:
In [23]:
example_eia.to_clipboard()
In [35]:
example_epa = epa.loc[idx[2016, 6, 1897], :]
example_epa
Out[35]:
In [39]:
co2_factor = (example_eia.sum()['elec fuel fossil co2 (kg)']
/ example_eia.sum()['all fuel total co2 (kg)'])
co2_factor
Out[39]:
In [40]:
co2_factor * example_epa['co2_mass (kg)']
Out[40]: